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Abstract
Species distribution modeling (SDM) at fine spatial resolutions

requires species occurrence data of high positional accuracy to

achieve good model performance. However, wildlife occurrences

recorded by patrols in ranger-based monitoring programs suffer from

positional errors, because recorded locations represent the positions

of the ranger and differ from the actual occurrence locations of wild-

life (hereinafter referred to as positional errors in patrol data). This

study presented an evaluation of the impact of such positional errors

in patrol data on SDM and developed a heuristic-based approach to

mitigating the positional errors. The approach derives probable wild-

life occurrence locations from ranger positions, utilizing heuristics

based on species preferred habitat and the observer’s field of view.

The evaluations were conducted through a case study of SDM using

patrol records of the black-and-white snub-nosed monkey (Rhinopi-

thecus bieti) in Yunnan, China. The performance of the approach was

also compared against alternative sampling methods. The results

showed that the positional errors in R. bieti patrol data had an adverse

effect on SDM performance, and that the proposed approach can

effectively mitigate the impact of the positional errors to greatly

improve SDM performance.
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1 | INTRODUCTION

Species distribution modeling (SDM) (Franklin & Miller, 2009) is widely used to predict the geographic distribution of

species to support decision making in conservation (e.g., managing biological invasions, identifying and protecting criti-

cal habitats, reserve selection, translocation, etc.) (Guisan et al., 2013). SDM requires two inputs: environmental data

layers characterizing the spatial variation of environmental conditions (i.e., maps of environmental variables) and spe-

cies data indicating the occurrence or abundance of species at sampled sites. With the rapid development of geospatial

technologies such as global positioning systems (GPS), geographic information systems (GIS), and remote sensing, envi-

ronmental data can now be obtained easily and in a timely manner (Gillespie, Foody, Rocchini, Giorgi, & Saatchi, 2008;

Kerr & Ostrovsky, 2003; van Zyl, 2001; Vi~na, Bearer, Zhang, Ouyang, & Liu, 2008).

The collection of species data, particularly wildlife occurrence data, often requires much more effort than environ-

mental data. Generally, wildlife occurrences are collected using techniques such as transects and distance sampling

(Anderson, Laake, Crain, & Burnham, 1979; Buckland et al., 2001), radio telemetry (Campbell & Sussman, 1994), infra-

red trapping cameras (Burton, Sam, Balangtaa, & Brashares, 2012; Trolle & K�ery, 2003), and GPS collars (Hemson et al.,

2005). Wildlife occurrence data collected through these techniques can be of high positional accuracy. However, these

techniques are often prohibitively expensive for conservation programs with limited budgets. The high cost renders

them impractical and unsustainable for conservation programs in poorer and remote regions of the world (Danielsen

et al., 2003), where most of the world’s biodiversity hotspots occur (Myers, Mittermeier, Mittermeier, da Fonseca, &

Kent, 2000).

Ranger-based monitoring has been recognized as a cost-effective practical alternative to sustain conservation with

limited supporting funds (Danielsen et al., 2003, 2005; Gray & Kalpers, 2005; Hilborn et al., 2006; Jachmann, 2008;

Plumptre et al., 2014; Poulsen & Luanglath, 2005). Many protected areas (e.g., nature reserves and national parks)

have set up routine patrols to monitor wildlife population, poaching, and illegal deforesting, and record encounters of

wildlife during the patrol (Burton, 2010; Gray & Kalpers, 2005; Hilborn et al., 2006; Walpole, 2002). Ranger-based

monitoring data, although subject to certain pitfalls such as nonrandom sampling (Keane, Jones, & Milner-Gulland,

2011), have been widely used to support management decisions (Danielsen et al., 2005; Gray & Kalpers, 2005), includ-

ing estimating wildlife population size (Plumptre et al., 2016), evaluating patrol effectiveness (Nyirenda, 2012), and

improving law-enforcement effectiveness and efficiency in protected areas (Critchlow et al., 2016; Plumptre et al.,

2014). Patrol records containing wildlife encounters could potentially provide wildlife occurrence data for species dis-

tribution modeling. Yet, to the best of our knowledge, there are few attempts to use ranger-based data for species dis-

tribution modeling—except for Plumptre et al. (2016), where patrol data were used to estimate wildlife presence

probability through occupancy analysis, but at a rather coarse spatial resolution (5 km).

One key factor that affects SDM accuracy is the positional accuracy of species occurrence data. Species occur-

rence locations are used to extract in-situ environment conditions from environmental data layers for SDM. Positional

errors in species occurrence data would result in mismatching in-situ environmental conditions and thus degrade the

accuracy of SDM (Fernandez, Blum, Reichle, Holzman, & Hamilton, 2009; Graham et al., 2008; Johnson & Gillingham,

2008; Moudr�y & �Símov�a, 2012; Osborne & Leit~ao, 2009).

Wildlife occurrence data from ranger-based monitoring programs (e.g., patrol records) suffer from positional errors.

Encountering wildlife, the patrol can often only record their own position using a handheld GPS receiver. The recorded

location is not the actual wildlife occurrence location, as the wildlife would not allow the patrol to approach that

closely. The difference between the recorded location and the actual wildlife occurrence location is referred to as the

positional error in patrol data in this study. The distance and direction relating the two locations were often not docu-

mented, thus it is difficult to correct for the positional errors to recover the actual wildlife occurrence location.

Although some SDM could achieve good predicting performance in the presence of positional errors in species

occurrences, such “robustness” only exists to certain levels of positional errors and for SDM at coarser spatial scales

(e.g., 1 km spatial resolution) (Graham et al., 2008; Johnson & Gillingham, 2008). Many conservation actions require

SDM at finer spatial scales (e.g., 30 m spatial resolution) to support management decisions, for example, translocation
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of threatened populations (Guisan et al., 2013) and habitat management/restoration in parks or nature reserves. More-

over, many SDM efforts are conducted at finer spatial scales (Franklin & Miller, 2009), as high-resolution environmental

data are increasingly available (Kerr & Ostrovsky, 2003; van Zyl, 2001). At such fine spatial scales, the positional errors

in wildlife occurrences from ranger-based monitoring might be far too significant to neglect.

This study presents a heuristic-based approach for mitigating the positional errors in patrol data for SDM. The

approach derives probable wildlife occurrence locations from patrol positions utilizing heuristics based on species pre-

ferred habitat and the observer’s field of view. The aims of the study were to examine the impact of the positional

errors in patrol data on SDM and to evaluate the effectiveness of the proposed approach. The evaluations were con-

ducted through a case study using 3-year patrol data on the black-and-white snub-nosed monkey (Rhinopithecus bieti)

in Yunnan, China. The accuracy of SDM using probable R. bieti occurrences derived from the approach was compared

to the accuracy of SDM using the raw R. bieti patrol records. The performance of the approach was also compared

against alternative sampling methods. Experiments were run on various partitions of the patrol data (i.e., year, season)

to investigate potential annual and seasonal variability of the positional errors.

2 | MATERIALS AND METHODS

2.1 | Study area and species

R. bieti is categorized as Endangered on the International Union for Conservation of Nature Red List (IUCN, 2016). R.

bieti is endemic to the eastern Himalayas in northwest Yunnan and southeast Tibet, China, between the upper Mekong

and Yangtze Rivers (Long, Kirkpatrick, Zhong, & Xiao, 1994; Xiao, Ding, Cui, Zhou, & Zhao, 2003). R. bieti has two levels

of social organization, where the monkeys form one-male multi-female units (OMUs) and all-male units (AMUs), and

multiple OMUs and AMUs travel together in a cohesive band (Kirkpatrick, Long, Zhong, & Xiao, 1998).

The study area was located at Mt. Lasha (998150E, 268200N) in northwest Yunnan, China (Figure 1). Mt. Lasha is

near the southernmost part of its geographic range (Long et al., 1994; Xiao et al., 2003). The 20.3 km2 study area is

part of the Yunling Nature Reserve, and it is an important habitat for a group of R. bieti consisting of approximately

100 individuals in 11 OMUs and 2 AMUs (Huang, Cui, Scott, Wang, & Xiao, 2012). The elevation ranges from about

2,500 to 4,000 m in the study area. The high-elevation ridgeline surrounding the area is largely deforested and used as

pasture by the local villagers. The low-elevation areas in the east are mainly farmland near villages. From lower eleva-

tion to higher elevation, the vegetation transitions from deciduous broadleaved forest to dark conifer forest with mixed

deciduous conifer forest in between. Several fire-induced forest clearings were present throughout the area (Huang,

2009; Huang et al., 2012, 2017).

FIGURE 1 (a) Location of theMt. Lasha study area in Yunnan, China; (b) map of theMt. Lasha study area
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2.2 | Patrol data

Yunling Nature Reserve has initialized a ranger-based monitoring program since its establishment in 2006. Local villagers

are employed and trained as forest rangers to carry out routine patrols in the protected area. The primary goals of patrols

are to monitor illegal activities (e.g., deforestation and poaching) in the reserve. In the Mt. Lasha area, one forest ranger

has been responsible for the routine patrol since August 2006. He regularly carried out patrols 5 days a month on three

main routes and a series of secondary routes covering the whole area. Patrol forms were used to record observed forest

conditions on the routes and encounters of wildlife (mostly R. bieti). Encounters with wildlife were visually confirmed with

the naked eye or using a telescope where necessary. A handheld GPS receiver was used to obtain geographic coordinates

(latitude and longitude) of the location at which the wildlife was sighted. The patrol date, geographic coordinates, species

name, number of wildlife encountered, behaviors of the wildlife, and habitat type (e.g., bare rocks, grassland, forest type

with dominant tree species, etc.) were recorded on a patrol form for each wildlife encounter. No information was recorded

on patrol forms indicating the distance and direction between the patrol position and the wildlife occurrence location.

Patrol records in 2006 did not cover a full year, and thus were excluded from analysis. Records in 2010 and later

were not examined either, because only validation data (Section 2.4.3) prior to 2010 were available. Recorded sightings of

R. bieti were extracted from patrol forms during the period of 2007 to 2009. A total of 103 R. bieti occurrence locations

over the 3 years were obtained (Figure 2). Year-wise, there were 25, 48, and 30 R. bieti occurrences in 2007, 2008, and

2009, respectively. Season-wise, there were 30, 23, 19, and 31 R. bieti occurrences in the spring (Mar, Apr, May), summer

(Jun, Jul, Aug), autumn (Sep, Oct, Nov), and winter (Dec, Jan, Feb) seasons, respectively, across the 3 years.

2.3 | A heuristic-based approach to mitigating positional errors

A heuristic-based approach was developed to derive the probable R. bieti occurrence locations corresponding to R. bieti

sightings recorded by the patrol for mitigating the impact of the positional errors on SDM using patrol data.

2.3.1 | Assumption

Positional errors exist in the R. bieti sightings for two reasons. On the one hand, R. bieti are afraid of humans and would

not allow the patrol to approach them too closely. On the other hand, the ability of the patrol to see the monkeys was

FIGURE 2 R. bieti occurrence locations extracted frompatrol records in the 2007–2009 period
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limited by the surrounding terrain. But since the patrol always visually confirmed R. bieti sightings, it is implied that the

actual location of R. bieti occurrence must be visible from the recorded patrol position.

We assumed that the monkeys are more likely to present in forest habitat they are known to prefer (i.e., forest

heuristic), that there was some minimum distance (Dmin) the monkeys would keep from the patrol, and that there was

some maximum distance (Dmax) at which the patrol could see the monkeys, depending on the terrain (i.e., visibility heu-

ristic). The actual R. bieti occurrence location corresponding to each sighting should be subject to these constraints.

Accordingly, the probable R. bieti occurrence location was selected based on the forest and visibility heuristics.

The proposed approach uses the same logic of binary and multivariate dasymetric areal interpolation methods (see

Eicher & Brewer, 2001) to first apply restrictions to narrow down the range within which phenomena occur. Once the

restrictions are imposed, our problem becomes how to select one probable occurrence location within the constrained

areas (whereas areal interpolation is concerned with allocating a raw areal total over the constrained areas).

2.3.2 | Implementation

Based on the above assumption, a heuristic-based approach was implemented to locate the probable R. bieti occur-

rence location corresponding to each recorded R. bieti sighting. R. bieti prefers to use coniferous, broadleaved, and the

mixture of coniferous and broadleaved forests in the study area (Huang et al., 2012). R. bieti patrol records confirmed

this, as the recorded habitat type information indicated that all encountered R. bieti occurred in these types of forest.

The preferred forests were extracted from a vegetation type map delineated by a field biologist during a field inventory

of the study area in 2009 (Huang, 2009). The spatial extent of the study area was determined by the boundary of the

vegetation type map.

Viewshed analysis was performed on a digital elevation model (DEM) of the study area to locate areas that are

visible from the recorded location (patrol position) within the [Dmin, Dmax] distance range. A DEM (30 m resolution)

was created from the contours digitized from 1:50,000 topographic maps of the area (20 m contour interval). There

are other freely available data sources for DEMs, for example, SRTM DEM (van Zyl, 2001) and ASTER DEM (Toutin,

2008). The mountainous study area has dramatic elevation change and dense vegetation cover. The DEM generated

from topographic maps was expected to be more accurate than other space-borne DEM products. The algorithm

developed by Wang, Robinson, and White (2000) was adopted to compute the viewshed at each recorded location.

Based on the field experiences of the patrol in the study area, Dmin was estimated as 50 m (the average closest dis-

tance the monkeys would allow the patrol to approach) and Dmax as 150 m (the average maximum distance at which

the monkeys were sighted).

The areas visible from a recorded location were spatially overlaid with the preferred forests. The intersection of

the two layers represents the extent of probable R. bieti occurrence locations. One location was randomly selected

from the intersection and treated as the probable R. bieti occurrence location corresponding to the recorded location

(Figure 3). One probable R. bieti occurrence location was selected for each of the recorded locations following this

procedure.

2.4 | Species distribution modeling

2.4.1 | Environmental data

SDM requires environmental data (predictors). Based on knowledge on the habitat use of R. bieti (Huang et al., 2012;

Kirkpatrick et al., 1998; Long et al., 1994; Zhang et al., 2017; Zhu et al., 2015), terrain conditions, water source, shelter

or food, and human impact were considered as the key factors that influence the habitat use and distribution of R. bieti

in the study area. Accordingly, data characterizing environmental variables related to these factors (Table 1) were used

in SDM. The derivation of these environmental data layers was performed using ArcMap (Esri, 2016).

2.4.2 | Modeling technique

The widely used Maxent method (Phillips, Anderson, & Schapire, 2006) was adopted for SDM. Maxent is statistically

rigorous (Elith et al., 2011), well suited for SDM with species presence-only data, and generally can achieve better
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performance amongst other alternatives (Elith & Graham, 2009; Elith et al., 2006). Maxent can incorporate both cate-

gorical and continuous predictors, and make good predictions even when the sample size is small (Phillips & Dudík,

2008; Phillips et al., 2006). Besides, the default values of modeling parameters were fine-tuned using a large data set

and thus users are relieved from the difficulty of tweaking model parameters (Phillips & Dudík, 2008).

The Maxent software (version 3.3.3k) was downloaded and used for SDM. The default values of the model param-

eters were fine-tuned based on a large data set and are supposed to achieve good modeling performance in general

(Phillips & Dudík, 2008). Thus, the default values were used throughout all experiments in this study (e.g., auto fea-

tures, logistic output format, add samples to background, etc.).

2.4.3 | Model evaluation

Validation data

Occurrence locations of R. bieti recorded during field tracking of the Mt. Lasha R. bieti group were used as independent

validation data to evaluate the accuracy of SDM using patrol data.

TABLE 1 Environmental variables (predictors) used in species distribution modeling (30 m resolution)

Category Environmental variable Data source

Terrain condition Elevation DEM created from contours digitized from 1:50,000 topographic
maps (20 m contour). Continuous

Slope Derived from DEM, unit in %. Continuous
Aspect Derived from DEM. 0–3608 discretized into eight equal 458

categories. Categorical

Water source Cost distance to river Least cost distances to rivers, slope (%) as cost. Continuous

Shelter or food Vegetation type Vegetation type map delineated by a field biologist during a field
inventory of the study area in 2009 (Huang, 2009). Categorical

Human impact Cost distance to village or road Least cost distances to villages or roads, slope (%) as cost.
Continuous

FIGURE 3 A heuristic-based approach for selecting the probable R. bieti occurrence location corresponding to a
recorded patrol location
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The occurrence locations were obtained by intensively tracking the group of monkeys in the study area.

The tracking was conducted by one field biologist and two assistants. They first spent nearly a year in the field

to familiarize themselves with the terrain and habituate the monkeys. Tracking and direct observation of the

monkeys were then conducted in 2008 and 2009 (primarily for behavioral study purposes) (Huang et al., 2012).

Time spent on field tracking covered 7 months in 2008 (May, Jun, Jul, Aug, Oct, Nov, Dec) and 8 months in

2009 (Jan, Feb, Mar, Apr, Jun, Jul, Aug, Sep). During the field tracking period, the monkeys’ location was plot-

ted on a large-scale topographic map (1:50,000) and recorded every 30 min (from 7 a.m. to 8 p.m.). In total,

2,615 R. bieti occurrence locations were recorded (1,323 and 1,292 occurrences in 2008 and 2009, respec-

tively; 722, 853, 584, and 466 occurrences in spring, summer, autumn, and winter, respectively) (Figure 4).

These field tracking occurrences are the most accurate data available that reveal the distribution of R. bieti in

the study area during the study period (2007 to 2009).

Evaluation metric

The area under the ROC (receiver operating characteristic) curve (AUC) was used as a measure of the accuracy of

SDM. Given a predicted map of species occurrence likelihood and validation data points where the species were

observed present (positive) or absent (negative), a ROC curve is obtained by plotting all true positive fraction values on

the y-axis against their equivalent false positive fraction for all available likelihood thresholds on the x-axis. The AUC is

the probability that the predicted occurrence likelihood at a randomly chosen presence location will be higher than

that at a randomly chosen absence location. The value of the AUC is in the range [0.5, 1.0]. AUC50.5 indicates that

the model performance is no better than random predictions. AUC51.0 indicates perfect model performance (Fielding

& Bell, 1997). Models with AUC values greater than 0.75 are considered potentially useful (Elith, Burgman, & Regan,

2002; Phillips & Dudík, 2008). The AUC provides a single model performance measure that is independent of any

choice of threshold.

If species absence data are not available in the validation data, then an AUC can be calculated using back-

ground data (i.e., pseudo-absences), chosen uniformly at random from the study area (Phillips & Dudík, 2008). In

this case, the AUC is the probability that a randomly chosen present location has a higher predicted occurrence

likelihood than a randomly chosen background location (Phillips et al., 2006). With presence-only data, random

prediction still corresponds to an AUC of 0.5, but the maximum achievable AUC is less than 1.0 (Wiley, McNyset,

FIGURE 4 R. bieti occurrence locations recorded during field tracking of themonkeys in 2008 and 2009
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Peterson, Robins, & Stewart, 2003). In this study, the AUC computed by Maxent was based on presence-only vali-

dation data (Section 2.4.3.1).

2.5 | Evaluation and assessment

To assess the impact of the positional errors, SDM was conducted using the original R. bieti sightings from patrol

records (i.e., raw sightings). The accuracy of the modeling result was evaluated using the independent validation data

(i.e., field tracking R. bieti occurrences).

SDM was also conducted using the probable R. bieti occurrence locations obtained through the heuristic-based

approach (i.e., probable occurrences). The effectiveness of the approach was assessed by comparing the accuracy of

SDM using the probable occurrences to that using the raw sightings. To account for the randomness in the approach

(i.e., randomly selecting one location from the constrained area as probable occurrence location), the approach was

repeatedly applied to the raw sightings 20 times to generate 20 sets of probable occurrences. SDM was performed on

each of the 20 sets of probable occurrences. The AUC of each SDM run was computed using the independent valida-

tion data. The mean of the 20 AUCs was computed and compared to the AUC of SDM using the raw sightings through

one sample t tests (Lehmann & Romano, 2006).

The effects of individual heuristics employed to locate the probable R. bieti occurrence location were examined

through comparative experiments. For comparison, four alternative sampling methods were implemented to obtain the

probable occurrence location corresponding to a recorded patrol position: (A) Randomly select a location that is Dmin

to Dmax distance away and visible from the patrol position (visibility constraint only); (B) Randomly select a location

that is Dmin to Dmax distance away from the patrol position and in the preferred forests (forest constraint only);

(C) Randomly select a location that is in the preferred forest; and (D) Randomly select a location that is in the study

area. Note that methods C and D totally discard the patrol position. Each sampling method was applied to the raw R.

bieti sightings 20 times to obtain 20 sets of probable occurrence locations. SDM was conducted using each set of

probable occurrence locations.

To allow for the examination of any potential annual or seasonal variations in the positional errors in patrol data,

SDM was conducted on various partitions of the patrol data: all patrol data; patrol data in each year (2007, 2008, and

2009); and patrol data in each season (spring, summer, autumn, and winter). For SDM using all patrol data and using

patrol data in each year, all the validation data were used to compute the AUC. For SDM using patrol data in a season,

validation of the data in the corresponding season was used to compute the AUC.

3 | RESULTS

Figure 5 shows the output distribution map of SDM using raw R. bieti sightings in each partition of the patrol data and

the distribution map averaged from the 20 output distribution maps of SDM using the corresponding 20 sets of proba-

ble R. bieti occurrences.

The AUC values of SDM using the raw sightings and the corresponding probable occurrences derived through the

heuristic-based approach as presented in Section 2.3 are shown in Table 2. The AUC values of SDM using the raw sight-

ings on most partitions were below 0.75 (except spring and autumn). The AUC values of SDM using the derived proba-

ble occurrences were above 0.75, and higher than those using the raw sightings on most partitions (except autumn).

The AUCs of SDM using probable R. bieti occurrence locations obtained using different sampling methods are

shown in Figure 6. As expected, the AUCs were around 0.5 (i.e., performance comparable to random prediction) for

SDM using locations randomly selected from the study area. The AUCs were around 0.75 for SDM using locations ran-

domly selected from forests. The AUCs were generally around 0.75 for SDM using locations obtained by the visibility

constraint only sampling method (except 2007, spring, and autumn). The AUCs were close to or above 0.8 for SDM

using locations obtained by the forest constraint only sampling method. The AUCs for SDM using locations obtained

by the proposed approach (i.e., two constraints) were slightly lower than those under the forest constraint only sam-

pling method.
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TABLE 2 Accuracy of SDM maps predicted using raw R. bieti sightings and using probable occurrences obtained
through the heuristic-based approach presented in Section 2.3

Year Season

Partitions All 2007 2008 2009 Spring Summer Autumn Winter

Raw sightings 0.721 0.650 0.745 0.721 0.826 0.743 0.816 0.708

Probable occurrences

Mean 0.789 0.758 0.787 0.787 0.857 0.813 0.811 0.819
Std 0.008 0.013 0.010 0.015 0.010 0.012 0.016 0.018

t Test

df 19 19 19 19 19 19 19 19
Critical value 37.073 35.134 17.508 18.779 13.048 26.185 21.397 26.387
p 0.000 0.000 0.000 0.000 0.000 0.0001 0.179 0.000

Correlation 0.804 0.692 0.861 0.776 0.886 0.704 0.892 0.745

t Test: One sample t test of the null hypothesis that the mean of the 20 AUCs of SDM using probable occurrences is
equal to the AUC of SDM using the raw sightings.
Correlation: Pearson’s correlation coefficient between SDM map (pixel values) predicted using raw sightings and the
average map of 20 SDM maps predicted using probable occurrences.

FIGURE 5 Output distributionmap of SDMusing raw R. bieti sightings and the corresponding probable occurrences
obtained through the heuristic-based approach (averagemap of 20 output distributionmaps). Values on themap indicate
the relative likelihood of R. bieti occurrence
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4 | DISCUSSION

4.1 | Impact of the positional errors

SDM models with AUC values above 0.75 are considered potentially useful (Elith et al., 2002; Phillips & Dudík, 2008).

It is thus fair to conclude that generally, the positional errors in the raw R. bieti sightings had significant adverse effects

on SDM and degraded the accuracy of SDM (except spring and autumn) (Table 2).

The accuracy of SDM using the raw sightings in spring and autumn was satisfactory (AUC50.832 and 0.816 in

spring and autumn, respectively), and higher than that in summer and winter. This indicates that patrol data collected

in summer and winter were more prone to positional errors, probably due to the weather conditions in the two sea-

sons that limited the patrol’s field of view (e.g., rain and fog in summer, snow in winter).

The accuracy of SDM using the raw sightings in 2007 (AUC50.650) was much lower than the accuracy of SDM

using the raw sightings in 2008 and 2009. This indicates that the patrol data in 2007 were more prone to positional

errors. This might be attributed to the fact that the patrol was less skillful and experienced in 2007 when patrolling in

the study was first initiated.

We ran the above experiments excluding R. bieti patrol data in 2007 (6, 5, 5, and 9 raw R. bieti sightings in spring,

summer, autumn, and winter, respectively), and the results are shown in Table 3. Compared with SDM using the 3-

year patrol data, the AUCs of SDM increased slightly on the all, spring, and winter partitions. This was a benefit of

excluding the more error-prone 2007 data, but the AUCs decreased slightly on the summer and autumn partitions,

which was probably due to the reduced sample sizes.

4.2 | Effectiveness of the approach

The mean AUC of SDM using the probable occurrences obtained through the heuristic-based approach (AUCprob) was

statistically significantly higher than that using the raw sightings (AUCraw) (Table 2). The only exception was on the

autumn partition, where AUCprob was slightly lower than AUCraw. But the difference was not statistically significant.

The heuristic-based approach greatly improved the AUC of SDM using patrol data in 2007 and winter by 0.108 and

0.111, respectively. Even in spring, where SDM using the raw R. bieti sightings could already result in satisfactory SDM

(AUCraw50.826), the approach improved the AUC by 0.031. The AUC of SDM using all raw sightings was below 0.75

(AUCraw50.721). By deriving probable occurrences to mitigate the positional errors, the approach improved the AUC

to around 0.8 (AUCprob50.789; an improvement of 0.068). A similar pattern was observed in the experiment results

FIGURE 6 Comparison of accuracy of SDMusing R. bieti occurrences obtained through different sampling approaches.

Themean and standard deviation (shown as an error bar) of the AUCwere computed based on 20AUC values
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excluding data in 2007 (Table 3). A largest AUC improvement of 0.097 was brought about by the approach on the win-

ter partition. The AUC improvement was 0.6 using all data in 2008 and 2009. Overall, the proposed heuristic-based

approach effectively mitigated positional errors in patrol data and improved the accuracy of SDM using patrol data.

4.3 | Effects of individual heuristics

As shown in Figure 6, the proposed approach (i.e., two constraints) and the forest constraint only sampling method

performed much better than the visibility constraint only sampling method and other sampling methods. Consistently,

the forest constraint only method had a slightly better performance than the proposed approach (Figure 6). These pat-

terns were also observed in experimental results excluding 2007 data (Figure 7).

It was clear that the forest constraint was more effective than the visibility constraint in mitigating positional

errors in patrol data. However, it is recommended not to abandon the visibility constraint in the heuristic-based

TABLE 3 Accuracy of SDM maps predicted using raw R. bieti sightings and probable occurrences obtained
through the heuristic-based approach (excluding data in 2007)

Year Season

Partitions All 2008 2009 Spring Summer Autumn Winter

Raw sightings 0.736 0.745 0.721 0.831 0.730 0.783 0.743

Probable occurrences

Mean 0.797 0.787 0.787 0.850 0.800 0.774 0.840
Std 0.006 0.010 0.015 0.016 0.014 0.017 0.023

t Test

df 19 19 19 19 19 19 19
Critical value 45.860 17.508 18.779 5.020 21.138 22.150 18.571
p 0.000 0.000 0.000 0.000 0.0001 0.045 0.000

Correlation 0.817 0.861 0.776 0.899 0.705 0.927 0.715

t Test: One sample t test of the null hypothesis that the mean of the 20 AUCs of SDM using probable occurrences is
equal to the AUC of SDM using the raw sightings.
Correlation: Pearson’s correlation coefficient between SDM map (pixel values) predicted using raw sightings and the
average map of 20 SDM maps predicted using probable occurrences.

FIGURE 7 Comparison of accuracy of SDMusing probable R. bieti occurrences obtained through different sampling
approaches (excluding data in 2007). Themean and standard deviation (shown as error bar) of AUCwere computed based
on 20AUC values
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approach. The visibility constraint is grounded on an understanding of the patrol data generation processes. In routine

patrols, visual confirmation of R. bieti sightings by the patrol was subject to the visibility constraint given the variety of

rugged terrains in the study area. We are aware that DEM-based viewshed analysis might not be sufficient to repre-

sent the real visibility conditions in the study area. Visibility could also be constrained by other factors such as vegeta-

tion and weather conditions. Nevertheless, DEM-based viewshed analysis provides a good first approximation to the

visibility constraint.

4.4 | Applicability of the approach

Positional errors in patrol data might not be an issue for SDM at coarse spatial resolutions. For example, Plumptre

et al. (2016) build an occupancy model using patrol data on 5 km3 5 km grid cells to predict Gorilla presence probabil-

ity. The proposed heuristic-based approach is intended to mitigate the positional errors in patrol data for SDM at fine

spatial resolutions (e.g., 30 m), which could be useful to support local-level conservation practices such as habitat man-

agement and restoration in parks or nature reserves (Franklin & Miller, 2009).

The proposed approach was designed based on knowledge of the ecology of species and the data generation

processes in the field. In this regard, the approach should be applicable to tackle positional errors in patrol data in gen-

eral. In this study, R. bieti is a very localized species in the study area (Huang et al., 2012; Huang, 2009), and two simple

heuristics were implemented based on R. bieti habitat preferences and the patrol’s field of view. If other useful knowl-

edge is available, it can be added to further narrow down the scope of the probable occurrence location. However, the

specific knowledge that is incorporated to select the probable species occurrence locations may depend on the species

of interest and situations. In other cases, heuristics based on a different set of knowledge on the species ecology and

data generation processes might be used instead.

Detailed and accurate species data, such as the R. bieti field tracking data used in this study, would not be available

in many other cases. Collecting such detailed data is costly, labor-intensive, and often carried out for species behavioral

studies (Huang et al., 2012). But it is worth pointing out that the tracking data were only used as independent valida-

tion data to evaluate the accuracy of SDM using patrol data. The proposed approach itself does not require such track-

ing data; it requires only patrol data and environmental data (e.g., land cover map, DEM). Some freely available data

sources for land cover map and DEM include the USGS 30 m Global Land Cover (Hansen et al., 2013), SRTM DEM

(van Zyl, 2001), and the ASTER DEM (Toutin, 2008).

Cost-effective patrol data accumulated in ranger-based monitoring programs might be the only available species

data to support conservation decision making in many funds-lacking scenarios (Danielsen et al., 2003). However, we

should remember that patrol data may be subject to data quality issues other than positional errors (Keane et al.,

2011). For example, the patrol may not record every wildlife sighting, especially for common species. This would result

in biases in occurrence data among species. Moreover, due to spatially or temporally unevenly distributed observation

efforts, there might be spatial or temporal sample selection bias in patrol data. In the case study, the ranger regularly

patrolled on routes covering the whole study area and recorded every R. bieti sighting; thus we expected the above-

mentioned biases to be insignificant. In cases where such biases are significant, measures should be taken to account

for them when using such data for SDM (Phillips et al., 2009; Zhang et al., 2017; Zhu et al., 2015).

5 | CONCLUSIONS

SDM at fine spatial resolutions using patrol data suffers from positional errors (i.e., recorded locations were patrol posi-

tions rather than actual wildlife occurrence locations). This study presented an evaluation of the impact of the posi-

tional errors in patrol data on SDM and developed a heuristic-based approach for mitigating the positional errors

based on species preferred habitat and the observer’s field of view. The effectiveness of the approach was thoroughly

evaluated through a case study of R. bieti in Yunnan, China. Results showed that the positional errors in R. bieti patrol

data had an adverse effect on SDM. The proposed heuristic-based approach effectively mitigated the positional errors

and greatly improved SDM performance. The evaluations, combined with the proposed positional errors mitigation
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approach, could better inform and improve the appropriate uses of cost-effective ranger-based monitoring data to sup-

port conservation.
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